How do you find all the zeros of #f(x)= 2x^3 + 3x^2+ 8x- 5#?
1 Answer
Aug 3, 2016
Explanation:
#f(x) = 2x^3+3x^2+8x-5#
By the rational root theorem, any rational zeros of
That means that the only possible ratioanl zeros of
#+-1/2, +-1, +-5/2, +-5#
We find:
#f(1/2) = 2/8+3/4+8/2-5 = 1/4+3/4+4-5 = 0#
So
#2x^3+3x^2+8x-5#
#= (2x-1)(x^2+2x+5)#
#= (2x-1)((x+1)^2+2^2)#
#= (2x-1)((x+1)^2-(2i)^2)#
#= (2x-1)(x+1-2i)(x+1+2i)#
Hence the other two zeros are:
#x = -1+-2i#