How do you find all the zeros of #F(X)= 3x^2 - 2x^2 + x +4#?
1 Answer
Use Cardano's method to find Real zero:
#x_1 = 1/9(2+root(3)(505+135sqrt(14))+root(3)(505-135sqrt(14)))#
and related Complex zeros...
Explanation:
Assuming that there's a typo in the question...
#f(x) = 3x^3-2x^2+x+4#
Descriminant
The discriminant
#Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd#
In our example,
#Delta = 4-12+128-3888-432 = -4200#
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
#0=243f(x)=729x^3-486x^2+243x+972#
#=(9x-2)^3+15(9x-2)+1010#
#=t^3+15t+1010#
where
Cardano's method
We want to solve:
#t^3+15t+1010=0#
Let
Then:
#u^3+v^3+3(uv+5)(u+v)+1010=0#
Add the constraint
#u^3-125/u^3+1010=0#
Multiply through by
#(u^3)^2+1010(u^3)-125=0#
Use the quadratic formula to find:
#u^3=(-1010+-sqrt((1010)^2-4(1)(-125)))/(2*1)#
#=(1010+-sqrt(1020100+500))/2#
#=(1010+-sqrt(1020600))/2#
#=(1010+-270sqrt(14))/2#
#=505+-135sqrt(14)#
Since this is Real and the derivation is symmetric in
#t_1=root(3)(505+135sqrt(14))+root(3)(505-135sqrt(14))#
and related Complex roots:
#t_2=omega root(3)(505+135sqrt(14))+omega^2 root(3)(505-135sqrt(14))#
#t_3=omega^2 root(3)(505+135sqrt(14))+omega root(3)(505-135sqrt(14))#
where
Now
#x_1 = 1/9(2+root(3)(505+135sqrt(14))+root(3)(505-135sqrt(14)))#
#x_2 = 1/9(2+omega root(3)(505+135sqrt(14))+omega^2 root(3)(505-135sqrt(14)))#
#x_3 = 1/9(2+omega^2 root(3)(505+135sqrt(14))+omega root(3)(505-135sqrt(14)))#