How do you find all the zeros of #f(x)=4x^3-20x^2-3x+15#?
1 Answer
Feb 27, 2016
Factor by grouping and by using the difference of squares identity to find:
#f(x) =(2x-sqrt(3))(2x+sqrt(3))(x-5)#
hence has zeros
Explanation:
Factor by grouping, then use the difference of squares identity:
#a^2-b^2 = (a-b)(a+b)#
with
#f(x) = 4x^3-20x^2-3x+15#
#=(4x^3-20x^2)-(3x-15)#
#=4x^2(x-5)-3(x-5)#
#=(4x^2-3)(x-5)#
#=((2x)^2-(sqrt(3))^2)(x-5)#
#=(2x-sqrt(3))(2x+sqrt(3))(x-5)#
So the zeros of