How do you find all the zeros of #f(x) = 4x^3 – 5x^2 + 9x – 6#?
1 Answer
Multiply by
Explanation:
#f(x) = 4x^3-5x^2+9x-6#
First multiply through by
#0 = 432 f(x)#
#= 1728x^3-2160x^2+3888x-2592#
#=(12x-5)^3+249(12x-5)-1222#
Substitute
#t^3+249t-1222 = 0#
Using Cardano's method, let
#u^3+v^3+(3uv+249)(u+v)-1222 = 0#
Add the constraint
#u^3-249^3/(27u^3)-1222 = 0#
Multiply through by
#27(u^3)^2-32994(u^3)-15438249 = 0#
Use the quadratic formula to find:
#u^3 = (32994+-sqrt(2755934928))/54#
#=(32994+-972 sqrt(2917))/54#
#=611+-18sqrt(2917)#
Due to the symmetry of the derivation in
#t_1 = root(3)(611+18sqrt(2917)) + root(3)(611-18sqrt(2917))#
and Complex roots:
#t_2 = omega root(3)(611+18sqrt(2917)) + omega^2 root(3)(611-18sqrt(2917))#
#t_3 = omega^2 root(3)(611+18sqrt(2917)) + omega root(3)(611-18sqrt(2917))#
where
Then you can derive the roots of the original equation:
#x_1 = (t_1+5)/12=1/12(5+root(3)(611+18sqrt(2917)) + root(3)(611-18sqrt(2917)))#
#x_2 = 1/12(5+omega root(3)(611+18sqrt(2917)) + omega^2 root(3)(611-18sqrt(2917)))#
#x_3 = 1/12(5+omega^2 root(3)(611+18sqrt(2917)) + omega root(3)(611-18sqrt(2917)))#