How do you find all the zeros of #f(x)= x^3 - 2x^2 + 5x -10# with its multiplicities?
1 Answer
Aug 20, 2016
Explanation:
This cubic factors by grouping then using the difference of squares identity:
#a^2-b^2=(a-b)(a+b)#
with
#x^3-2x^2+5x-10#
#=(x^3-2x^2)+(5x-10)#
#=x^2(x-2)+5(x-2)#
#=(x^2+5)(x-2)#
#=(x^2-(sqrt(5)i)^2)(x-2)#
#=(x-sqrt(5)i)(x+sqrt(5)i)(x-2)#
Hence zeros:
#+-sqrt(5)i# and#2#