How do you find all the zeros of #f(x)=x^3-2x^2+x+1#?
1 Answer
Use Cardano's method to find Real zero:
#x_1 = 1/3(2+root(3)((29+3sqrt(93))/2)+root(3)((29-3sqrt(93))/2))#
and Complex conjugate pair of related Complex root.
Explanation:
#f(x) = x^3-2x^2+x+1#
Descriminant
The discriminant
#Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd#
In our example,
#Delta = 4-4+32-27-36 = -31#
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
#0=27f(x)=27x^3-54x^2+27x+27#
#=(3x-2)^3-3(3x-2)+29#
#=t^3-3t+29#
where
Cardano's method
We want to solve:
#t^3-3t+29=0#
Let
Then:
#u^3+v^3+3(uv-1)(u+v)+29=0#
Add the constraint
#u^3+1/u^3+29=0#
Multiply through by
#(u^3)^2+29(u^3)+1=0#
Use the quadratic formula to find:
#u^3=(-29+-sqrt((29)^2-4(1)(1)))/(2*1)#
#=(29+-sqrt(841-4))/2#
#=(29+-sqrt(837))/2#
#=(29+-3sqrt(93))/2#
Since this is Real and the derivation is symmetric in
#t_1=root(3)((29+3sqrt(93))/2)+root(3)((29-3sqrt(93))/2)#
and related Complex roots:
#t_2=omega root(3)((29+3sqrt(93))/2)+omega^2 root(3)((29-3sqrt(93))/2)#
#t_3=omega^2 root(3)((29+3sqrt(93))/2)+omega root(3)((29-3sqrt(93))/2)#
where
Now
#x_1 = 1/3(2+root(3)((29+3sqrt(93))/2)+root(3)((29-3sqrt(93))/2))#
#x_2 = 1/3(2+omega root(3)((29+3sqrt(93))/2)+omega^2 root(3)((29-3sqrt(93))/2))#
#x_3 = 1/3(2+omega^2 root(3)((29+3sqrt(93))/2)+omega root(3)((29-3sqrt(93))/2))#