How do you find all the zeros of #f(x)=x^3+3x^2-5x+8#?
1 Answer
Use Cardano's method to find Real zero:
#x_1 = 1/3(-3+root(3)((-405+3sqrt(12081))/2) + root(3)((-405-3sqrt(12081))/2))#
and related Complex zeros.
Explanation:
From the rational root theorem we can deduce that the only possible rational zeros are:
#+-1, +-2, +-4, +-8#
None of these work, so there are no rational zeros.
The discriminant
#Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd#
In our example,
#Delta = 225+500-864-1728-2160=-4027#
Since
We can simplify the problem by making the substitution
#x^3+3x^2-5x+8#
#= (x^3+3x^2+3x+1)-8(x+1)+15#
#=(x+1)^3-8(x+1)+15#
#= t^3-8t+15#
Using Cardano's method, let
#u^3+v^3+(3uv-8)(u+v)+15 = 0#
Add the constraint
#u^3+512/(27u^3)+15 = 0#
Multiply through by
#27(u^3)^2+405(u^3)+512 = 0#
Use the quadratic formula to find:
#u^3=(-405+-sqrt(405^2-4(27)(512)))/(2*27)#
#=(-405+-sqrt(164025-55296))/54#
#=(-405+-sqrt(108729))/54#
#=(-405+-3sqrt(12081))/54#
Hence Real zero:
#t_1 = root(3)((-405+3sqrt(12081))/54) + root(3)((-405-3sqrt(12081))/54)#
#= 1/3(root(3)((-405+3sqrt(12081))/2) + root(3)((-405-3sqrt(12081))/2))#
and related Complex zeros:
#t_2 = 1/3(omega root(3)((-405+3sqrt(12081))/2) + omega^2 root(3)((-405-3sqrt(12081))/2))#
#t_3 = 1/3(omega^2 root(3)((-405+3sqrt(12081))/2) + omega root(3)((-405-3sqrt(12081))/2))#
where
Then
#x_1 = 1/3(-3+root(3)((-405+3sqrt(12081))/2) + root(3)((-405-3sqrt(12081))/2))#
#x_2 = 1/3(-3+omega root(3)((-405+3sqrt(12081))/2) + omega^2 root(3)((-405-3sqrt(12081))/2))#
#x_3 = 1/3(-3+omega^2 root(3)((-405+3sqrt(12081))/2) + omega root(3)((-405-3sqrt(12081))/2))#