How do you find all the zeros of # f(x)=x^3+7x^2-6x-72 #?
1 Answer
Use the rational root theorem to help find the first zero, then complete the square to find the other two, giving:
#3# ,#-4# ,#-6#
Explanation:
#f(x) = x^3+7x^2-6x-72#
By the rational root theorem, any rational zeros of
That means that the only possible rational zeros are:
#+-1# ,#+-2# ,#+-3# ,#+-4# ,#+-6# ,#+-12# ,#+-18# ,#+-24# ,#+-36# ,#+-72#
Trying each in turn, the first one that works is:
#f(3) = 3^3+(7*3^2)-(6*3)-72 = 27+63-18-72 = 0#
So
#x^3+7x^2-6x-72 = (x-3)(x^2+10x+24)#
One way of factoring the remaining quadratic factor
#x^2+10x+24#
#=(x+5)^2-25+24#
#=(x+5)^2-1^2#
#=((x+5)-1)((x+5)+1)#
#=(x+4)(x+6)#
Hence zeros:
#x = -4# and#x=-6#