How do you find all the zeros of #f(x)=x^3+x^2-7x+2#?
1 Answer
Apr 16, 2016
Explanation:
By the rational root theorem, any rational zeros of
That means that the only possible rational zeros are:
#+-1# ,#+-2#
We find:
#f(2) = 8+4-14+2 = 0#
So
#x^3+x^2-7x+2 = (x-2)(x^2+3x-1)#
We can factor the remaining quadratic expression by completing the square. I will multiply by
#4(x^2+3x-1)#
#=4x^2+12x-4#
#=(2x+3)^2-9-4#
#=(2x+3)^2-(sqrt(13))^2#
#=((2x+3)-sqrt(13))((2x+3)+sqrt(13))#
#=(2x+3-sqrt(13))(2x+3+sqrt(13))#
Hence