How do you find all the zeros of #f(x)=x^4-2x-1#?
1 Answer
Reduce to solving two quadratics...
Explanation:
#f(x) = x^4-2x-1#
Since
#x^4-2x-1#
#= (x^2-ax+b)(x^2+ax+c)#
#= x^4+(b+c-a^2)x^2+(b-c)ax+bc#
Equating coefficients and rearranging a little we get:
#{ (b+c = a^2), (b-c = -2/a), (bc=-1) :}#
Then:
#(a^2)^2 = (b+c)^2 = (b-c)^2+4bc = (-2/a)^2-4 = 4/((a^2))-4#
Multiply both ends by
#(a^2)^3 + 4(a^2) - 4 = 0#
Use Cardano's method to solve this cubic in
Let
Add the constraint
#u^3-64/(27u^3)-4 = 0#
Multiply through by
#27(u^3)^2-108(u^3)-64 = 0#
Use the quadratic formula to find:
#u^3 = (108+-sqrt((-108)^2-4(27)(-64)))/(2*27)#
#=(108+-sqrt(11664+6912))/54#
#=(108+-sqrt(18576))/54#
#=(108+-12sqrt(129))/54#
#=(54+-6sqrt(129))/27#
Hence Real root:
#a^2 = 1/3(root(3)(54+6sqrt(129))+root(3)(54-6sqrt(129)))#
We can use the positive root as the value of
#a = sqrt(1/3(root(3)(54+6sqrt(129))+root(3)(54-6sqrt(129))))#
Then:
#b = 1/2(a^2-2/a)#
#= 1/6(root(3)(54+6sqrt(129))+root(3)(54-6sqrt(129)))-1/sqrt(1/3(root(3)(54+6sqrt(129))+root(3)(54-6sqrt(129))))#
#c = 1/2(a^2+2/a)#
#= 1/6(root(3)(54+6sqrt(129))+root(3)(54-6sqrt(129)))+1/sqrt(1/3(root(3)(54+6sqrt(129))+root(3)(54-6sqrt(129))))#
This leaves us with two quadratics to solve:
#x^2-(sqrt(1/3(root(3)(54+6sqrt(129))+root(3)(54-6sqrt(129)))))x+( 1/6(root(3)(54+6sqrt(129))+root(3)(54-6sqrt(129)))-1/sqrt(1/3(root(3)(54+6sqrt(129))+root(3)(54-6sqrt(129))))) = 0#
#x^2+(sqrt(1/3(root(3)(54+6sqrt(129))+root(3)(54-6sqrt(129)))))x+( 1/6(root(3)(54+6sqrt(129))+root(3)(54-6sqrt(129)))+1/sqrt(1/3(root(3)(54+6sqrt(129))+root(3)(54-6sqrt(129))))) = 0#
We can find the roots of these quadratics using the quadratic formula, which are the zeros of the original quartic