How do you find all the zeros of #f(x)=x^4+5x^3-2x^2-18x-12#?
1 Answer
Aug 4, 2016
Explanation:
#f(x) = x^4+5x^3-2x^2-18x-12#
Note that:
#f(-1) = 1-5-2+18-12 = 0#
So
#x^4+5x^3-2x^2-18x-12#
#=(x+1)(x^3+4x^2-6x-12)#
Next try substituting
#8+4(4)-6(2)-12 = 8+16-12-12 = 0#
So
#x^3+4x^2-6x-12#
#=(x-2)(x^2+6x+6)#
#=(x-2)((x+3)^2-9+6)#
#=(x-2)((x+3)^2-(sqrt(3))^2)#
#=(x-2)((x+3)-sqrt(3))((x+3)+sqrt(3))#
#=(x-2)(x+3-sqrt(3))(x+3+sqrt(3))#
Hence zeros