How do you find all the zeros of #f(x)=x^4+7x^3-x^2-67x-60#?
1 Answer
Zeros:
Explanation:
By the rational root theorem, any rational zeros of
So the only possible rational zeros are:
#+-1, +-2, +-3, +-4, +-5, +-6, +-10, +-12, +-15, +-20, +-30, +-60#
We find:
#f(-1) = 1-7-1+67-60 = 0#
So
#x^4+7x^3-x^2-67x-60 = (x+1)(x^3+6x^2-7x-60)#
Let
We find:
#g(3) = 27+54-21-60 = 0#
So
#x^3+6x^2-7x-60 = (x-3)(x^2+9x+20)#
To factor the remaining quadratic, note that
#x^2+9x+20 = (x+4)(x+5)#
Hence remaining two zeros: