How do you find all the zeros of #f(x)=x^4-x^3-3x^2-x+1#?
1 Answer
#x_(1,2)=(1+sqrt(21)+-sqrt(6+2sqrt(21)))/4#
#x_(3,4)=(1-sqrt(21))/4+-sqrt(2sqrt(21)-6)/4i#
Explanation:
#f(x) = x^4-x^3-3x^2-x+1#
Notice the symmetry of the coefficients:
So:
#f(x)/x^2 = x^2-x-3-1/x-1/x^2=(x+1/x)^2-(x+1/x)-5#
Let
Then:
#0 = t^2-t-5#
#= (t-1/2)^2-1/4-5#
#= (t-1/2)^2-(sqrt(21)/2)^2#
#= (t-1/2-sqrt(21)/2)(t-1/2+sqrt(21)/2)#
So:
#x+1/x = t = 1/2+-sqrt(21)/2#
Multiply both ends by
#x^2-(1/2+-sqrt(21)/2)x+1 = 0#
Writing the solutions of these two possibilities separately, we have solutions given by the quadratic formula:
#x_(1,2) = (1/2+sqrt(21)/2+-sqrt((1/2+sqrt(21)/2)^2-4))/2#
#=(1+sqrt(21)+-sqrt((1+sqrt(21))^2-16))/4#
#=(1+sqrt(21)+-sqrt(6+2sqrt(21)))/4#
#x_(3,4) = (1/2-sqrt(21)/2+-sqrt((1/2-sqrt(21)/2)^2-4))/2#
#=(1-sqrt(21)+-sqrt((1-sqrt(21))^2-16))/4#
#=(1-sqrt(21)+-sqrt(6-2sqrt(21)))/4#
#=(1-sqrt(21))/4+-sqrt(2sqrt(21)-6)/4i#