How do you find all the zeros of #g(x)= - 2x^3+5x^2-6x-10#?
1 Answer
Use Cardano's method to find Real zero:
#x_1 = 1/6(5+root(3)(685+6sqrt(13071))+root(3)(685-6sqrt(13071)))#
and related Complex zeros.
Explanation:
#g(x) = -2x^3+5x^2-6x-10#
Descriminant
The discriminant
#Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd#
In our example,
#Delta = 900-1728+5000-10800-10800 = -17428#
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
#0=-108g(x)=216x^3-540x^2+648x+1080#
#=(6x-5)^3+33(6x-5)+1370#
#=t^3+33t+1370#
where
Cardano's method
We want to solve:
#t^3+33t+1370=0#
Let
Then:
#u^3+v^3+3(uv+11)(u+v)+1370=0#
Add the constraint
#u^3-1331/u^3+1370=0#
Multiply through by
#(u^3)^2+1370(u^3)-1331=0#
Use the quadratic formula to find:
#u^3=(-1370+-sqrt((1370)^2-4(1)(-1331)))/(2*1)#
#=(1370+-sqrt(1876900+5324))/2#
#=(1370+-sqrt(1882224))/2#
#=(1370+-12sqrt(13071))/2#
#=685+-6sqrt(13071)#
Since this is Real and the derivation is symmetric in
#t_1=root(3)(685+6sqrt(13071))+root(3)(685-6sqrt(13071))#
and related Complex roots:
#t_2=omega root(3)(685+6sqrt(13071))+omega^2 root(3)(685-6sqrt(13071))#
#t_3=omega^2 root(3)(685+6sqrt(13071))+omega root(3)(685-6sqrt(13071))#
where
Now
#x_1 = 1/6(5+root(3)(685+6sqrt(13071))+root(3)(685-6sqrt(13071)))#
#x_2 = 1/6(5+omega root(3)(685+6sqrt(13071))+omega^2 root(3)(685-6sqrt(13071)))#
#x_3 = 1/6(5+omega^2 root(3)(685+6sqrt(13071))+omega root(3)(685-6sqrt(13071)))#