How do you find all the zeros of #g(x) = 9x^3- 7x^2 + 10x - 4#?
1 Answer
Use Cardano's method to find Real zero:
#x_1 = 1/27(7+root(3)(-1882+81sqrt(2185))+root(3)(-1882-81sqrt(2185)))#
and related Complex zeros.
Explanation:
#g(x) = 9x^3-7x^2+10x-4#
Descriminant
The discriminant
#Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd#
In our example,
#Delta = 4900-36000-5488-34992+45360 = -26220#
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
#0=2187g(x)=19683x^3-15309x^2+21870x-8748#
#=(27x-7)^3+663(27x-7)-3764#
#=t^3+663t-3764#
where
Cardano's method
We want to solve:
#t^3+663t-3764=0#
Let
Then:
#u^3+v^3+3(uv+221)(u+v)-3764=0#
Add the constraint
#u^3-10793861/u^3-3764=0#
Multiply through by
#(u^3)^2-3764(u^3)-10793861=0#
Use the quadratic formula to find:
#u^3=(3764+-sqrt((-3764)^2-4(1)(-10793861)))/(2*1)#
#=(-3764+-sqrt(14167696+43175444))/2#
#=(-3764+-sqrt(57343140))/2#
#=(-3764+-162(2185))/2#
#=-1882+-81(2185)#
Since this is Real and the derivation is symmetric in
#t_1=root(3)(-1882+81sqrt(2185))+root(3)(-1882-81sqrt(2185))#
and related Complex roots:
#t_2=omega root(3)(-1882+81sqrt(2185))+omega^2 root(3)(-1882-81sqrt(2185))#
#t_3=omega^2 root(3)(-1882+81sqrt(2185))+omega root(3)(-1882-81sqrt(2185))#
where
Now
#x_1 = 1/27(7+root(3)(-1882+81sqrt(2185))+root(3)(-1882-81sqrt(2185)))#
#x_2 = 1/27(7+omega root(3)(-1882+81sqrt(2185))+omega^2 root(3)(-1882-81sqrt(2185)))#
#x_3 = 1/27(7+omega^2 root(3)(-1882+81sqrt(2185))+omega root(3)(-1882-81sqrt(2185)))#