How do you find all the zeros of #x^2 - 8x - 48 = 0# with its multiplicities?
1 Answer
Apr 16, 2016
Explanation:
Complete the square then use the difference of squares identity:
#a^2-b^2 = (a-b)(a+b)#
with
#0 = x^2-8x-48#
#=(x-4)^2-16-48#
#=(x-4)^2-8^2#
#=((x-4)-8)((x-4)+8)#
#=(x-12)(x+4)#
So