How do you find all the zeros of #x^3+2x^2-3x-3#?
1 Answer
Use a trigonometric solution to find:
#x_k = 1/3(-2+2sqrt(13) cos(1/3(arccos((11sqrt(13))/338) + 2kpi)))#
#k = 0, 1, 2#
Explanation:
Using the rational root theorem we find that the only possible rational zeros are:
#+-1# ,#+-3#
None of these work, so none of the zeros are rational.
The discriminant
#Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd#
In our example,
#Delta = 36+108+96-243+324 = 321#
Since
As a result, pure algebraic methods like Cardano's method will yield results containing irreducible cube roots of Complex numbers. So choose to use a trigonometric solution instead.
First, use a Tschirnhaus transformation to eliminate the square term...
#27f(x) = 27x^3+54x^2-81x-81 = (3x+2)^3-39(3x+2)-11#
Let
We want to solve:
#t^3-39t-11 = 0#
Next, use a substitution of the form:
#t = 2sqrt(13) cos theta#
The multiplier
#0 = (2sqrt(13) cos theta)^3 - 39 (2sqrt(13) cos theta) - 11#
#=26sqrt(13)(4 cos^3 theta - 3 cos theta) - 11#
#=26sqrt(13)cos 3theta - 11#
So:
#cos 3 theta = 11/(26sqrt(13)) = (11sqrt(13))/338#
#theta = +-1/3(arccos((11sqrt(13))/338) + 2kpi)#
#cos theta = cos(1/3(arccos((11sqrt(13))/338) + 2kpi))#
#t = 2sqrt(13) cos(1/3(arccos((11sqrt(13))/338) + 2kpi))#
#x_k = 1/3(-2+2sqrt(13) cos(1/3(arccos((11sqrt(13))/338) + 2kpi)))# which has distinct values for
#k = 0, 1, 2#
#x_0 ~~ 1.4605048700187635#
#x_1 ~~ -2.699628148275318#
#x_2 ~~ -0.7608767217434455#