How do you find all the zeros of #x^3 + 2x^2 + 5x +1#?
1 Answer
Use Cardano's method...
Explanation:
To cut down on the number of fractions we need to work with, multiply by
#0 = 27f(x)#
#=27x^3+54x^2+135x+27#
#=(3x+2)^3+33(3x+2)-47#
Substitute
#=t^3+33t-47#
Using Cardano's method, substitute
#=u^3+v^3+3(uv+11)(u+v)-47#
Add the constraint
#=u^3-(11^3/u^3)-47#
#=u^3-1331/u^3-47#
Multiply through by
#(u^3)^2-47(u^3)-1331 = 0#
Solve using the quadratic formula to get:
#u^3 = (47+-sqrt(47^2+4*1331))/2#
#= (47+-sqrt(7533))/2#
#= (47+-9sqrt(93))/2#
Since the derivation was symmetric in
#t_1 = root(3)((47+9sqrt(93))/2) + root(3)((47-9sqrt(93))/2)#
and the Complex roots:
#t_2 = omega root(3)((47+9sqrt(93))/2) + omega^2 root(3)((47-9sqrt(93))/2)#
#t_3 = omega^2 root(3)((47+9sqrt(93))/2) + omega root(3)((47-9sqrt(93))/2)#
where
Then
#x_1 = 1/3(-2+root(3)((47+9sqrt(93))/2) + root(3)((47-9sqrt(93))/2) )#
#x_2 = 1/3(-2 + omega root(3)((47+9sqrt(93))/2) + omega^2 root(3)((47-9sqrt(93))/2))#
#x_3 = 1/3(-2 + omega^2 root(3)((47+9sqrt(93))/2) + omega root(3)((47-9sqrt(93))/2))#