How do you find all the zeros of #x^3-x^2+2x+1#?
1 Answer
Use Cardano's method to find Real zero:
#x_1 = 1/3(1+root(3)((-43+9sqrt(29))/2)+root(3)((-43-9sqrt(29))/2))#
and Complex zeros.
Explanation:
Premultiply by
#0 = 3^3 (x^3-x^2+2x+1)#
#=27x^3-27x^2+54x+27#
#=(3x-1)^3+15(3x-1)+43#
Let
#t^3+15t+43 = 0#
Using Cardano's method, let
#u^3+v^3+3(uv+5)(u+v)+43 = 0#
Let
#u^3-5^3/u^3+43 = 0#
Multiply through by
#(u^3)^2+43(u^3)-125 = 0#
Use the quadratic formula to find:
#u^3 = (-43+-sqrt(43^2+(4*125)))/2#
#=(-43+-sqrt(1849+500))/2#
#=(-43+-sqrt(2349))/2#
#=(-43+-9sqrt(29))/2#
The derivation was symmetric in
#t_1 = root(3)((-43+9sqrt(29))/2)+root(3)((-43-9sqrt(29))/2)#
and Complex roots:
#t_2 = omega root(3)((-43+9sqrt(29))/2)+omega^2 root(3)((-43-9sqrt(29))/2)#
#t_3 = omega^2 root(3)((-43+9sqrt(29))/2)+omega root(3)((-43-9sqrt(29))/2)#
where
Then
#x_1 = 1/3(1+root(3)((-43+9sqrt(29))/2)+root(3)((-43-9sqrt(29))/2))#
#x_2 = 1/3(1+omega root(3)((-43+9sqrt(29))/2)+omega^2 root(3)((-43-9sqrt(29))/2))#
#x_3 = 1/3(1+omega^2 root(3)((-43+9sqrt(29))/2)+omega root(3)((-43-9sqrt(29))/2))#