How do you find all zeros of #f(x)=5x^4+15x^2+10#?
1 Answer
Dec 30, 2016
Explanation:
We will use the difference of squares identity, which can be written:
#a^2-b^2 = (a-b)(a+b)#
with
#f(x) = 5x^4+15x^2+10#
#color(white)(f(x)) = 5(x^4+3x^2+2)#
#color(white)(f(x)) = 5(x^2+1)(x^2+2)#
#color(white)(f(x)) = 5(x^2-i^2)(x^2-(sqrt(2)i)^2)#
#color(white)(f(x)) = 5(x-i)(x+i)(x-sqrt(2)i)(x+sqrt(2)i)#
Hence the zeros of
#x = +-i#
#x = +-sqrt(2)i#