How do you find all zeros of the function #f(x)=3x^2-17x+20#?

1 Answer
Mar 12, 2016

Use the quadratic formula to find:

#x = 4# or #x = 5/3#

Explanation:

#3x^2-17x+20# is of the form #ax^2+bx+c# with #a=3#, #b=-17# and #c=20#.

This has zeros given by the quadratic formula:

#x = (-b+-sqrt(b^2-4ac))/(2a)#

#=(17+-sqrt((-17)^2-(4*3*20)))/(2*3)#

#=(17+-sqrt(289-240))/6#

#=(17+-sqrt(49))/6#

#=(17+-7)/6#

That is #x = 4# or #x = 5/3#