How do you find all zeros of the function #f(x)= 3x^3-2x^2+x+2#?
1 Answer
Find Real zero:
#x_1 = 1/9(2+root(3)(-262+9sqrt(849))+root(3)(-262-9sqrt(849)))#
and related non-Real Complex zeros using Cardano's method.
Explanation:
#f(x) = 3x^3-2x^2+x+2#
Rational root theorem
By the rational root theorem, any rational zeros of
That means that the only possible rational zeros are:
#+-1/3# ,#+-2/3# ,#+-1# ,#+-2#
None of these work, so
Discriminant
The discriminant
#Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd#
In our example,
#Delta = 4-12+64-972-216=-1132#
Since
Cardano's method
We can use Cardano's method to find the zeros, but first we need to simplify the form of the cubic by premultiplying by
#243 f(x) = 243(3x^3-2x^2+x+2)#
#= 729x^3-486x^2+243x+486#
#= (9x-2)^3+15(9x-2)+524#
Let
We want to solve:
#t^3+15t+524 = 0#
Let
Then:
#u^3+v^3+3(uv+5)(u+v)+524=0#
Add the constraint:
#v = -5/u#
to eliminate the term in
#u^3-125/u^3+524 = 0#
Multiply through by
#(u^3)^2+524(u^3)-125 = 0#
Use the quadratic formula to find roots:
#u^3=(-524+-sqrt(524^2-4(1)(-125)))/2#
#=(-524+-sqrt(274576+500))/2#
#=(-524+-sqrt(275076))/2#
#=(-524+-18sqrt(849))/2#
#=-262+-9sqrt(849)#
Since these roots are Real and the derivation was symmetrical in
#t_1 = root(3)(-262+9sqrt(849))+root(3)(-262-9sqrt(849))#
and corresponding Complex roots:
#t_2 = omega root(3)(-262+9sqrt(849))+omega^2 root(3)(-262-9sqrt(849))#
#t_3 = omega^2 root(3)(-262+9sqrt(849))+omega root(3)(-262-9sqrt(849))#
where
Hence zeros for the original cubic:
#x_1 = 1/9(2+root(3)(-262+9sqrt(849))+root(3)(-262-9sqrt(849)))#
#x_2 = 1/9(2+omega root(3)(-262+9sqrt(849))+omega^2 root(3)(-262-9sqrt(849)))#
#x_3 = 1/9(2+omega^2 root(3)(-262+9sqrt(849))+omega root(3)(-262-9sqrt(849)))#