How do you find all zeros with multiplicities of #f(x)=-17x^3+5x^2+34x-10#?

1 Answer
Jul 14, 2017

Answer:

The zeros are #x = 5/17 , x = sqrt2 , x = -sqrt 2#

Explanation:

#f(x) = -17 x^3 +5x ^2 +34x -10 # or

#f(x) = -17 x^3 +34x +5x^2 -10 # or

#f(x) = -17x( x^2 -2) +5(x^2 -2)# or

#f(x) = ( x^2 -2)(-17x+5) # or

#f(x) = ( x +sqrt2)(x-sqrt2)(-17x+5) #

#f(x)=0 # When #( x +sqrt2)=0 or x = -sqrt 2# ,

#(x-sqrt2) =0 or x = sqrt2 # and #(-17x+5)=0 or 17x =5 or x = 5/17#

The zeros are #x = 5/17 , x = sqrt2 , x = -sqrt 2# [Ans]