How do you find all zeros with multiplicities of #f(x)=9x^3-5x^2-x#?
1 Answer
Aug 11, 2018
all with multiplicity
Explanation:
#0 = 36f(x)#
#color(white)(0) = 36(9x^3-5x^2-x)#
#color(white)(0) = x(324x^2-180x-36)#
#color(white)(0) = x((18x)^2-2(18x)(5)+25-61)#
#color(white)(0) = x((18x-5)^2-(sqrt(61))^2)#
#color(white)(0) = x(18x-5-sqrt(61))(18x-5+sqrt(61))#
Hence:
#x=0#
or:
#18x=5+-sqrt(61)" "# so#" "x = 5/18+-sqrt(61)/18#