How do you find #cot(-180)#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Massimiliano · Alan P. Feb 3, 2015 The answer is: it does not exists. The function #y=cotx# would be writtend in this form: #cotx=1/tanx=1/(sinx/cosx)=cosx/sinx#. So: #cot(-180°)=cos(-180°)/sin(-180°)#. #cos(-180°)=-1#, #sin(-180°)=0#. #cot(-180°)=1/0# that does not exists (or we can say that the function #rarr+-oo#). Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 6275 views around the world You can reuse this answer Creative Commons License