How do you find #(df)/dy# and #(df)/dx# of #f(x,y)=(3x^2-2e^-y)/(2e^x+y^-3)#, using the quotient rule?

1 Answer
Feb 11, 2017

# (partial f)/(partial x) = ( 6x(2e^x+y^-3) - 2e^x(3x^2-2e^-y) ) / (2e^x+y^-3)^2 #

# (partial f)/(partial y) = ( 2e^-y(2e^x+y^-3) +3y^-4(3x^2-2e^-y) )/ (2e^x+y^-3)^2 #

Explanation:

The quotient rule for multi variable calculus is identical to single variable calculus except that we perform the differentiation wrt to a specific variable whilst holding other variable constant. so:

# (partial)/(partial x) (u(x,y))/(v(x,y))= (v(partial u)/(partial x) - u(partial u)/(partial x)) / v^2 #

# (partial)/(partial y) (u(x,y))/(v(x,y))= (v(partial u)/(partial y) - u(partial u)/(partial y)) / v^2 #

We have:

# f(x,y)=(3x^2-2e^-y)/(2e^x+y^-3) #

If we differentiate wrt #x# using the quotient rule (whilst holding #y# constant) we get:

# (partial f)/(partial x) = ( (2e^x+y^-3)(6x) -(3x^2-2e^-y) (2e^x) ) / (2e^x+y^-3)^2 #
# \ \ \ \ \ \ \ \= ( 6x(2e^x+y^-3) - 2e^x(3x^2-2e^-y) ) / (2e^x+y^-3)^2 #

If we differentiate wrt #y# using the quotient rule (whilst holding #x# constant) we get:

# (partial f)/(partial y) = ( (2e^x+y^-3)(2e^-y) -(3x^2-2e^-y) (-3y^-4) ) / (2e^x+y^-3)^2 #
# \ \ \ \ \ \ \= ( 2e^-y(2e^x+y^-3) +3y^-4(3x^2-2e^-y) )/ (2e^x+y^-3)^2 #