How do you find equations for the lines that are tangent and normal to the graph of #y=secx# at #x=pi/4#?
1 Answer
Dec 13, 2016
The corresponding y coordinate is
We now find the derivative.
#y= 1/cosx#
#y' = (0 xx cosx - (-sinx xx 1))/(cosx)^2#
#y' = (sinx)/(cos^2x)#
#y' = tanxsecx#
We can now find the slope of the tangent.
#m_"tangent" = tan(pi/4)sec(pi/4)#
#m_"tangent" = 1(sqrt(2))#
#m_"tangent" =sqrt(2)#
The equation is therefore:
#y - y_1 = m(x - x_1)#
#y- sqrt(2) = sqrt(2)(x- pi/4)#
#y - sqrt(2) = sqrt(2)x - (sqrt(2)pi)/4#
#y= sqrt(2)x - (sqrt(2)pi)/4 + sqrt(2)#
#y= sqrt(2x) - (sqrt(2)pi + 4sqrt(2))/4#
#y = sqrt(2x) - (sqrt(2)(pi + 4))/4#
Hopefully this helps!