How do you find f'(2) using the limit definition given #3/(x+1)#?
1 Answer
Aug 8, 2016
The limit definition at a point is that the derivative of
#f'(a)=lim_(xrarra)(f(x)-f(a))/(x-a)#
So here, where
#f'(2)=lim_(xrarr2)(3/(x+1)-3/(2+1))/(x-2)#
#f'(2)=lim_(xrarr2)(3/(x+1)-1)/(x-2)#
#f'(2)=lim_(xrarr2)(3/(x+1)-(x+1)/(x+1))/(x-2)#
#f'(2)=lim_(xrarr2)((3-(x+1))/(x+1))/(x-2)#
#f'(2)=lim_(xrarr2)(3-(x+1))/(x+1)(1/(x-2))#
#f'(2)=lim_(xrarr2)(-x+2)/(x+1)(1/(x-2))#
#f'(2)=lim_(xrarr2)(-(x-2))/(x+1)(1/(x-2))#
#f'(2)=lim_(xrarr2)(-1)/(x+1)#
#f'(2)=(-1)/(2+1)#
#f'(2)=-1/3#