How do you find f'(x) using the limit definition given #f(x) = 3/(x-2)#?

1 Answer
May 29, 2016

#f'(x)=-3/(x-2)^2#

Explanation:

The limit definition of a derivative states that

#f'(x)=lim_(hrarr0)(f(x+h)-f(x))/h#

Substituting #f(x)=4+9x-x^2# into #f'(x)#,

#f'(x)=lim_(hrarr0)(3/(x+h-2)-3/(x-2))/h#

From this point on, you want to expand and simplify.

#f'(x)=lim_(hrarr0)(3(x-2)-3(x+h-2))/((x+h-2)(x-2))*1/h#

#f'(x)=lim_(hrarr0)(3x-6-3x-3h+6)/((x+h-2)(x-2))*1/h#

#f'(x)=lim_(hrarr0)(color(red)cancelcolor(black)(3x)color(blue)cancelcolor(black)(-6)color(red)cancelcolor(black)(-3x)-3hcolor(blue)cancelcolor(black)(+6))/((x+h-2)(x-2))*1/h#

#f'(x)=lim_(hrarr0)(-3h)/((x+h-2)(x-2))*1/h#

#f'(x)=lim_(hrarr0)(-3color(darkorange)cancelcolor(black)h)/((x+h-2)(x-2))*1/color(darkorange)cancelcolor(black)h#

#f'(x)=lim_(hrarr0)-3/((x+h-2)(x-2))#

Plugging in #h=0#,

#f'(x)=-3/((x+0-2)(x-2))#

#f'(x)=color(green)(|bar(ul(color(white)(a/a)color(black)(-3/(x-2)^2)color(white)(a/a)|)))#