How do you find (f og)(x) and (g of)(x) given #f(x)=9x-5# and #g(x)=9-3x#?

1 Answer
Mar 5, 2017

#(f@g)(x)=76-27x#
#(g@f)(x)=24-27x#

Explanation:

#"Note " (f@g)(x)=f(g(x)" and " (g@f)(x)=g(f(x))#

The method of processing is the same.

#rArrf(g(x))#

#"Substitute g(x) into f(x)"#

#=f(color(red)(9-3x))#

#=9(color(red)(9-3x))-5#

#=81-27x-5#

#=76-27x#

For g( f(x)) substitute f( x) into g( x)

#rArrg(f(x))#

#=g(color(red)(9x-5))#

#=9-3(color(red)(9x-5))#

#=9-27x+15#

#=24-27x#