Function Composition
Key Questions
-
Answer:
Yes
Explanation:
Given composable functions
#f# ,#g# and#h# #(f@(g@h))(x)# #= f((g@h)(x)) = f(g(h(x))) = (f@g)(h(x))# #= ((f@g)@h)(x)# So
#f@(g@h) = (f@g)@h# -
Answer:
If
#g:A->B# and#f:B->C# , then the domain of#f@g# is#bar(g)^(-1)@bar(f)^(-1)(C)# using the notation described below...
Explanation:
If
#g# is a function that maps some elements of a set#A# to elements of a set#B# , then the domain of#g# is the subset of#A# for which#g(a)# is defined.More formally:
#g sube A xx B :# #AA a in A AA b_1, b_2 in B# #((a, b_1) in g ^^ (a, b_2) in g) => b_1 = b_2# Use the notation
#2^A# to represent the set of subsets of#A# and#2^B# the set of subsets of#B# .Then we can define the pre-image function:
#bar(g)^(-1): 2^B -> 2^A# by#bar(g)^(-1)(B_1) = {a in A : g(a) in B_1}# Then the domain of
#g# is simply#bar(g)^(-1)(B)# If
#f# is a function that maps some elements of set#B# to elements of a set#C# , then:#bar(f)^(-1): 2^C -> 2^B# is defined by#bar(f)^(-1)(C_1) = {b in B : f(b) in C_1}# Using this notation, the domain of
#f@g# is simply#bar(g)^(-1)(bar(f)^(-1)(C)) = (bar(g)^(-1)@bar(f)^(-1))(C)# -
To compose a function is to input one function into the other to form a different function. Here's a few examples.
Example 1: If
#f(x) = 2x + 5# and#g(x) = 4x - 1# , determine#f(g(x))# This would mean inputting
#g(x)# for#x# inside#f(x)# .#f(g(x)) = 2(4x- 1) + 5 = 8x- 2 + 5 = 8x + 3# Example 2: If
#f(x) = 3x^2 + 12 + 12x# and#g(x) =sqrt(3x)# , determine#g(f(x))# and state the domainPut
#f(x)# into#g(x)# .#g(f(x)) = sqrt(3(3x^2 + 12x + 12))# #g(f(x)) = sqrt(9x^2 + 36x + 36)# #g(f(x)) = sqrt((3x + 6)^2)# #g(f(x)) = |3x + 6|# The domain of
#f(x)# is#x in RR# . The domain of#g(x)# is#x > 0# . Hence, the domain of#g(f(x))# is#x > 0# .Example 3: if
#h(x) = log_2 (3x^2 + 5)# and#m(x) = sqrt(x + 1)# , find the value of#h(m(0))# ?Find the composition, and then evaluate at the given point.
#h(m(x)) = log_2 (3(sqrt(x + 1))^2 + 5)# #h(m(x)) = log_2 (3(x + 1) + 5)# #h(m(x)) = log_2 (3x + 3 + 5)# #h(m(x)) = log_2 (3x + 8)# #h(m(2)) = log_2 (3(0) + 8)# #h(m(2)) = log_2 8# #h(m(2)) = 3# Practice exercises
For the following exercises:
#f(x) = 2x + 7, g(x) = 2^(x - 7) and h(x) = 2x^3 - 4# a) Determine
#f(g(x))# b) Determine
#h(f(x))# c) Determine
#g(h(2))# Hopefully this helps, and good luck!