How do you find f'(x) and f''(x) given #f(x)=x/(3+e^x)#?

1 Answer
Dec 13, 2017

Please see below.

Explanation:

#f(x)=x/(3+e^x)#

Using #d/dx(f/g) = (f'g-fg')/g^2# with #f=x# and #g = 3+e^x#

#f'(x) = ((1)(3+e^x)-(x)(e^x))/(3+e^x)^2#

# = (3+e^x-xe^x)/(3+e^x)^2#

Using #d/dx(f/g) = (f'g-fg')/g^2# again, but this time with #f=3+e^x-xe^x# and #g = (3+e^x)^2#

#f''(x) = ((e^x-(1e^x+xe^x))(3+e^x)^2 - (3+e^x-xe^x)(2(3+e^x)e^x))/(3+e^x)^4#

#= ((-xe^x)color(red)((3+e^x)^2) - 2e^x(3+e^x-xe^x)(color(red)((3+e^x))))/(3+e^x)^4#

#= (color(red)((3+e^x))[(-xe^x)color(red)((3+e^x)) - 2e^x(3+e^x-xe^x]))/(3+e^x)^4#

# = ((-xe^x)(3+e^x) - 2e^x(3+e^x-xe^x))/(3+e^x)^3#

Rewrite the numerator to taste.