How do you find #f(x)+g(x), f(x)-g(x), f(x)*g(x), (f/g)(x)# given #f(x)=x^2-2x# and #g(x)=x+9#?

1 Answer
Feb 18, 2017

#f(x) + g(x) = x^2-x +9 #
#f(x) - g(x) = x^2-3x-9 #
#f(x) * g(x) = x^3+7x^2-18x#
#(f/g)(x) = (x(x-2))/(x+9)#

Explanation:

Substitute the functions into the equations and add like-terms:

#f(x) + g(x) = x^2-2x + x+9 = x^2-x +9#

Distribute the negative and add like-terms:
#f(x) - g(x) = x^2-2x - (x+9) = x^2-2x -x-9 #
#= x^2-3x-9#

Distribute and add like-terms:
#f(x) * g(x) = (x^2-2x)(x+9) = x^3+9x^2-2x^2-18x#
#= x^3+7x^2-18x#

Factor numerator:
#(f/g)(x) = (x^2-2x)/(x+9) = (x(x-2))/(x+9)#