We are given:
#f(x) = 1/(x-3)#
The limit definition of the derivative is:
#f^(')(x) = lim_(\Deltax->0) (f(x+\Deltax)-f(x))/(\Deltax)#
#=lim_(\Deltax->0)(1/(x+\Deltax-3)-1/(x-3))/(\Deltax)#
#=lim_(\Deltax->0)((x-3)/((x+\Deltax-3)(x-3))-(x+\Deltax-3)/((x+\Deltax-3)(x-3)))/(\Deltax)#
#=lim_(\Deltax->0)((x-3-(x+\Deltax-3))/((x+\Deltax-3)(x-3)))/(\Deltax)#
#=lim_(\Deltax->0)(cancelxcancel(-3)cancel(-x)-\Deltaxcancel(+3))/(\Deltax(x+\Deltax-3)(x-3))#
#=lim_(\Deltax->0)-(cancel(\Deltax))/(cancel(\Deltax)(x+\Deltax-3)(x-3))#
#=lim_(\Deltax->0)-(1)/((x+\Deltax-3)(x-3))#
#=-(1)/((x+(0)-3)(x-3))#
#=-(1)/((x-3)(x-3))#
#=-(1)/(x-3)^2#
Hence:
#=> color(green)(f'(x) = -(1)/(x-3)^2)#