How do you find f'(x) using the definition of a derivative for #f(x)=1/sqrt(x)#?
1 Answer
Oct 18, 2015
The crucial step uses
Explanation:
# = lim_(hrarr0)(1/sqrt(x+h)-1/sqrtx)/h#
# = lim_(hrarr0)((sqrtx-sqrt(x+h))/(sqrt(x+h)sqrtx))/(h/1)#
# = lim_(hrarr0)((sqrtx-sqrt(x+h)))/((hsqrt(x+h)sqrtx)) #
# = lim_(hrarr0)((sqrtx-sqrt(x+h)))/((hsqrt(x+h)sqrtx)) * ((sqrtx+sqrt(x+h)))/((sqrtx+sqrt(x+h)))#
# = lim_(hrarr0)(x-(x+h))/((hsqrt(x+h)sqrtx)(sqrtx+sqrt(x+h)))#
# = lim_(hrarr0)(-h)/(hsqrt(x+h)sqrtx(sqrtx+sqrt(x+h)))#
# = lim_(hrarr0)(-1)/(sqrt(x+h)sqrtx(sqrtx+sqrt(x+h)))#
# = (-1)/(sqrtxsqrtx(sqrtx+sqrtx))#
# = (-1)/(2xsqrtx)#
Or, if you prefer