How do you find f'(x) using the definition of a derivative for #f(x)= x - sqrt(x) #?

1 Answer
Nov 1, 2015

Use limit definition of derivative to find:

#f'(x) =1+1/(2sqrt(x))#

Explanation:

#f(x) = x - sqrt(x)#

#f'(x) = lim_(h->0) ((f(x+h) - f(x))/h)#

#=lim_(h->0) (((x+h+sqrt(x+h))-(x+sqrt(x)))/h)#

#=lim_(h->0) ((h+(sqrt(x+h)-sqrt(x)))/h)#

#=1 + lim_(h->0)(((sqrt(x+h)-sqrt(x))(sqrt(x+h)+sqrt(x)))/(h(sqrt(x+h)+sqrt(x))))#

#=1 + lim_(h->0)(((x+h)-x)/(h(sqrt(x+h)+sqrt(x))))#

#=1 + lim_(h->0)(h/(h(sqrt(x+h)+sqrt(x))))#

#=1 + lim_(h->0)(1/(sqrt(x+h)+sqrt(x)))#

#=1+1/(2sqrt(x))#