Use #f'(x) = lim_(hto0)(f(x+h) - f(x))/h#
Given: #f(x) = -3x^3 + 9x + 4#
Then write the expression for #f(x + h)#
#f(x+h) = -3(x+h)^3 + 9(x + h) + 4#
#f(x+h) = -3(x+h)(x^2 + 2hx + h^2) + 9(x + h) + 4#
#f(x+h) = -3(x^3 + 2hx^2 + h^2x + hx^2 + 2h^2x + h^2) + 9(x + h) + 4#
#f(x+h) = -3(x^3 + 3hx^2 + 3h^2x + h^2) + 9(x + h) + 4#
#f(x+h) = -3x^3 - 9hx^2 - 9h^2x - 9h^2 + 9x + 9h + 4#
The above is the simplest form of #f(x + h)#
Use that form to simplify the numerator:
#f(x+h) - f(x) = -3x^2 - 9hx^2 - 9h^2x - 9h^2 + 9x + 9h + 4 + 3x^3 - 9x - 4#
#f(x+h) - f(x) = -9hx^2 - 9h^2x - 9h^2 + 9h#
Remove a common factor, h:
#f(x+h) - f(x) = h(-9x^2 - 9hx - 9h + 9)#
Substitute the simplified numerator into the limit:
#f'(x) = lim_(hto0)(h(-9x^2 - 9hx - 9h + 9))/h#
#h/h# becomes 1:
#f'(x) = lim_(hto0)-9x^2 - 9hx - 9h + 9#
Let #h to 0#
#f'(x) = -9x^2 + 9#