How do you find #\int _ { 1} ^ { 2} \frac { x ^ { 2} - x - 16} { 32x - 2x ^ { 3} } d x#?
1 Answer
The integral has value
Explanation:
We can factor
We can now say that
We can solve this as follows.
This signifies that
We can now rewrite the definite integral.
#=int_1^2 1/(16(x - 4)) - 1/(16(x + 4)) - 1/(2x)dx#
We write as three separate integrals.
#=int_1^2 1/(16(x - 4))dx - int_1^2 1/(16(x +4))dx - int_1^2 1/(2x)dx#
#=[1/16ln|x - 4|]_1^2 - [1/16ln|x + 4|]_1^2 - [1/2ln|x|]_1^2#
#=1/16ln|-2| - 1/16ln|-3| - (1/16ln|6| - 1/16ln|5|) - (1/2ln|2| - 1/2ln|1|)#
#=1/16ln2 - 1/16ln3 - 1/16ln6 + 1/16ln5 - 1/2ln2 + 0#
#=1/16ln(5/9) - 1/2ln2#
Hopefully this helps!