How do you find #int (11-2x)/(x^2 + x - 2) dx# using partial fractions?

2 Answers
Oct 22, 2016

#int((11-2x)dx)/((x-1)(x+2))=3ln(x-1)-5ln(x+2)+C#

Explanation:

First factorise the denominator
#x^2+x-2=(x-1)(x+2)#

Then we look for the partial fraction

#(11-2x)/((x-1)(x+2))=A/(x-1)+B/(x+2)#

#=(A(x+2) +B(x-1))/((x-1)(x+2))#

So #11-2x=A(x+2) +B(x-1)#

If #x=1# #=># #11-2=3A+0#
so #A=9/3=3#

If #x=-2# #=># #11+4=0-3B#
so #B=15/-3=-5#

#(11-2x)/((x-1)(x+2))=3/(x-1)-5/(x+2)#

Then we can integrate

#int((11-2x)dx)/((x-1)(x+2))=int(3dx)/(x-1)-int(5dx)/(x+2)#

#=3ln(x-1)-5ln(x+2)+C#

See the answer:
enter image source here