How do you find #\int _ { - 2} ^ { 1} ( x - 8| x | ) d x#?

1 Answer
Dec 29, 2016

#int_(-2)^1(x-8|x|)dx =-43/2#

Explanation:

By definition of the integral we have that:

#int_(-2)^1(x-8|x|)dx = int_(-2)^0(x-8|x|)dx+int_0^1(x-8|x|)dx#

Now, in the first interval #|x|=-x#, while in the second #|x|=x#, so:

#int_(-2)^1(x-8|x|)dx = int_(-2)^0(x+8x)dx+int_0^1(x-8x)dx#

#int_(-2)^1(x-8|x|)dx = 9int_(-2)^0 xdx-7int_0^1xdx#

#int_(-2)^1(x-8|x|)dx = 9[x^2/2]_(-2)^0 - 7[x^2/2]_0^1=-18-7/2=-43/2#