How do you find #int 2/((x^4-1)x) dx# using partial fractions?

1 Answer
Oct 30, 2015

#I=-2ln|x|+1/2ln|x-1|+1/2ln|x+1|+1/2ln|x^2+1|+C#

Explanation:

#2/((x^4-1)x)=2/((x^2-1)(x^2+1)x)=2/((x-1)(x+1)(x^2+1)x)#

#2/((x-1)(x+1)(x^2+1)x)=A/x+B/(x-1)+C/(x+1)+(Dx+E)/(x^2+1)=#

#=(A(x-1)(x+1)(x^2+1))/(x(x-1)(x+1)(x^2+1))+(Bx(x+1)(x^2+1))/(x(x-1)(x+1)(x^2+1))+#

#+(Cx(x-1)(x^2+1))/(x(x-1)(x+1)(x^2+1))+((Dx+E)x(x-1)(x+1))/(x(x-1)(x+1)(x^2+1))=#

#=(A(x^4-1))/(x(x-1)(x+1)(x^2+1))+(Bx(x^3+x^2+x+1))/(x(x-1)(x+1)(x^2+1))+#

#+(Cx(x^3-x^2+x-1))/(x(x-1)(x+1)(x^2+1))+((Dx+E)(x^3-x))/(x(x-1)(x+1)(x^2+1))=#

#=(Ax^4-A)/(x(x-1)(x+1)(x^2+1))+(Bx^4+Bx^3+Bx^2+Bx)/(x(x-1)(x+1)(x^2+1))+#

#+(Cx^4-Cx^3+Cx^2-Cx)/(x(x-1)(x+1)(x^2+1))+(Dx^4+Ex^3-Dx^2-Ex)/(x(x-1)(x+1)(x^2+1))=#

#=(x^4(A+B+C+D)+x^3(B-C+E))/(x(x-1)(x+1)(x^2+1))+#

#+(x^2(B+C-D)+x(B-C-E)+(-A))/(x(x-1)(x+1)(x^2+1))#

#A+B+C+D=0#
#B-C+E=0#
#B+C-D=0#
#B-C-E=0#
#-A=2 => A=-2#

#[II-IV] => 2E=0 => E=0#

#B+C+D=2#
#B-C=0 => B=C#
#B+C-D=0#

#2C+D=2#
#2C-D=0#

#4C=2 => C=1/2 => B=1/2#

#D=2C => D=1#

#I=int 2/((x^4-1)x)dx= -2int dx/x +1/2int dx/(x-1) + 1/2int dx/(x+1) + int (xdx)/(x^2+1)#

#I=-2ln|x|+1/2ln|x-1|+1/2ln|x+1|+1/2ln|x^2+1|+C#

Note:

#int (xdx)/(x^2+1) = int (1/2(2xdx))/(x^2+1) = 1/2int (d(x^2+1))/(x^2+1) = 1/2ln|x^2+1|#