How do you find #\int ( 4- 3\cos x ) ^ { \frac { 1} { 2} } d x#?

1 Answer
May 11, 2018

Use the trigonometric identity:

#1-cosx = 2sin^2(x/2)#

to have:

#int sqrt(4-3cosx)dx = int sqrt (1+3(1-cosx))dx = int sqrt(1+6sin^2(x/2))dx#

Substitute now:

#t = sin(x/2)#

#x = 2arcsint#

#dx = (2dt)/sqrt(1-t^2)#

so:

#int sqrt(4-3cosx)dx = 2 int sqrt(1+6t^2)/sqrt(1-t^2) dt#

This is an elliptic integral of the second kind and as thus cannot be expressed in terms of elementary functions.