Perform the decomposition into partial fractions
#(x-1)/((x+2)(x^2+3))=A/(x+2)+(Bx+C)/(x^2+3)#
#=(A(x^2+3)+(Bx+C)(x+2))/((x+2)(x^2+3))#
The denominators are the same, compare the numerators
#x-1=A(x^2+3)+(Bx+C)(x+2)#
Let #x=-2#, #=>#, #-3=7A#, #=>#, #A=-3/7#
Let #x=0#, #=>#, #-1=3A+2C#
#2C=-1-3A=-1+9/7=2/7#
#C=1/7#
Coefficients of #x^2#
#0=A+B#
#B=-A=3/7#
Therefore,
#(x-1)/((x+2)(x^2+3))=(-3/7)/(x+2)+((3/7)x+(1/7))/(x^2+3)#
So,
#int((x-1)dx)/((x+2)(x^2+3))=int(-3/7dx)/(x+2)+int(((3/7)x+(1/7))dx)/(x^2+3)#
#=-3/7ln(|x+2|)+3/14int(2xdx)/(x^2+3)+1/7int(1dx)/(x^2+3)#
#=-3/7ln(|x+2|)+3/14ln(x^2+3)+1/21int(dx)/((x/sqrt3)^2+1)#
#=-3/7ln(|x+2|)+3/14ln(x^2+3)+1/21*sqrt3arctan(x/sqrt3)+C#
#=-3/7ln(|x+2|)+3/14ln(x^2+3)+1/(7sqrt3)arctan(x/sqrt3)+C#