How do you find points of inflection and determine the intervals of concavity given #y=(x+2)^(1/3)#?

1 Answer
Jan 8, 2018

See below.

Explanation:

Finding the first derivative and solving for #0# will identify any stationary points. These can be max/min of points of inflection.

#d/dx(x+2)^1/3=1/(x+2)^(2/3)#

#f'(x)=0=> 1/(x+2)^(2/3)=0#

#0=1#

This has no solutions. ( no max/min, but possible inflection point )

Using second derivative.

#f''(x) > 0# convex ( concave up )

#f''(x) < 0# concave (concave down )

Second derivative:

#f''(x)=f'(f'x)#

#d/dx(1/(x+2)^(2/3))-2/(9(x+2)^(5/3))#

#-2/(9(x+2)^(5/3))<0#

#9(x+2)^(5/3)>0#

#x+2>0#

#x> -2#

Concave down #color(blue)([ -2 , oo ))#

#-2/(9(x+2)^(5/3))>0#

#1/((x+2)^(5/3))<0#

#(x+2)<0#

#x<-2#

Convex #color(blue)((-oo,-2])#

Inflection point at #color(blue)(((-2,0)))#

GRAPH:

graph{y=(x+2)^(1/3) [-12.66, 12.65, -6.33, 6.33]}