How do you find #S_n# for the geometric series #a_1=2401#, r=-1/7, n=5?

1 Answer
May 24, 2017

#S_5 = 2101#

Explanation:

#color(white)()#
Background

The general term of a geometric series is described by the formula:

#a_n = ar^(n-1)#

where #a# is the initial term and #r# the common ratio.

Then we find:

#(1-r) sum_(n=1)^N a_n = (1-r) sum_(n=1)^N ar^(n-1)#

#color(white)((1-r) sum_(n=1)^N a_n) = sum_(n=1)^N ar^(n-1) - r sum_(n=1)^N ar^(n-1)#

#color(white)((1-r) sum_(n=1)^N a_n) = sum_(n=1)^N ar^(n-1) - sum_(n=2)^(N+1) ar^(n-1)#

#color(white)((1-r) sum_(n=1)^N a_n) = a + color(red)(cancel(color(black)(sum_(n=2)^N ar^(n-1)))) - color(red)(cancel(color(black)(sum_(n=2)^N ar^(n-1)))) - ar^N#

#color(white)((1-r) sum_(n=1)^N a_n) = a(1 - r^N)#

Dividing both ends by #(1-r)#, we find:

#color(green)(sum_(n=1)^N a_n = (a(1 - r^N))/(1-r))#

#color(white)()#
Example

In our example, #a=2401=7^4#, #r = -1/7#, #N=5# and we find:

#sum_(n=1)^5 a_n = (color(blue)(2401)(1-(color(blue)(-1/7))^5))/(1-(color(blue)(-1/7)))#

#color(white)(sum_(n=1)^5 a_n) = (7^4(1+1/7^5))/(8/7)#

#color(white)(sum_(n=1)^5 a_n) = (7^4+1/7)/(8/7)#

#color(white)(sum_(n=1)^5 a_n) = (7^5+1)/8#

#color(white)(sum_(n=1)^5 a_n) = 16808/8#

#color(white)(sum_(n=1)^5 a_n) = 2101#

Alternatively, given the small number of terms, we could just add up the series:

#2401-343+49-7+1 = 2101#