How do you find #S_n# for the geometric series #a_1=3#, #a_n=46,875#, r=-5?

2 Answers
Mar 6, 2018

#S_n=39063#

Explanation:

#a_1=3 , r =-5 , a_n= 46875 #. We know #n# th term of a

geometric series is #a_n=a_1*r^(n-1) or 45875= 3* (-5)^(n-1)# or

# (-5)^(n-1) =46875/3=15625# or

#((-1)*5)^(n-1) =15625# or

#(-1)^(n-1)* 5^(n-1) =15625#

# 5^(n-1) =15625# Taking log on both sides we get

#(n-1) log 5 = log 15625 or (n-1) = log 15625/log5 # or

#(n-1)=6 :. n=7 ; (-1)^(n-1)=(-1)^6=1#

Number of terms is #n=7#. We know sum of#n# terms of a

geometric series is #S_n=a_1*(r^n-1)/(r-1)# or

#S_n=(3*((-5)^7-1))/(-5-1)=(3*(-78125-1))/(-6)# or

#S_n=(3*(-78126))/(-6)=39063# [Ans]

Mar 6, 2018

#39063#

Explanation:

For a geometric series:

#S_n=(a(1-r^n))/(1-r)#

Where:

#bba# is the first term, #bbr# is the common ratio and #bbn# is the nth term.

We know the first term #a_1=3# and common ratio is #-5#

We need to find the value of #n#.

If we find the sum of the first #n# terms and then subtract the sum of the first #n-1# terms, this will give us the #a_n#th term.

#(3(1+5^(n-1)))/(1+5)=(1+(5)^(n-1))/2#

#(1+(5)^(n))/2-(1+(5)^(n-1))/2=a_n=46875#

#(1+(5)^(n)-1-(5)^(n-1))/2=46875#

#((5)^(n)-(5)^(n-1))/2=46875#

#(5)^(n)-(5)^(n-1)=93750#

#5^n=5^(n-1+1)#

#5^(n-1+1)=5^1*5^(n-1)#

#5^1*5^(n-1)-5^(n-1)=93750#

#5^(n-1)(5^1-1)=93750#

#5^(n-1)*4=93750#

#5^(n-1)=93750/4=23437.5#

Taking logs:

#(n-1)ln(5)=ln(23437.5)#

#n=ln(23437.5)/ln(5)+1~~7.251929636#

#n# must be an integer so #n=7#

#S_n=S_7=(3(1+5^7))/6=234378/6=39063#