How do you find the 6 trigonometric functions for x =3π/4?

1 Answer
Aug 18, 2015

sin #((3pi)/4)#= #1/sqrt2#
cos#((3pi)/4)#= #- 1/sqrt2#. Rest can be worked out using these values.

Explanation:

To begin with, #(3pi)/4equals (pi- pi/4)#. Hence,

sin #((3pi)/4)= sin (pi-pi/4)= sin((pi)/4)= 1/sqrt2#. Like wise,

cos#((3pi)/4)= cos(pi-pi/4)= - cos(pi/4)= -1/sqrt2#.

Other trignometric functions can now be easily worked out, #tan((3pi)/4)= -1, cot((3pi)/4)=-1, sec((3pi)/4)=-sqrt2, csc((3pi)/4)= sqrt2#