How do you find the antiderivative of # cos 5 x#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer bp · Steve M Jan 3, 2017 #1/5 sin 5x +C# Explanation: Anti derivative of #cos 5x# means #int \ cos 5x \ dx# Now, let #5x=t#, so that #5 dx=dt# or, #dx =1/5 dt# Thus #int \ cos 5x \ dx =1/5 int \ cos t \ dt# #=1/5 sint +C# #=1/5 sin5x +C# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 1547 views around the world You can reuse this answer Creative Commons License