How do you find the antiderivative of #int (2x^3-1)(x^4-2x)^6dx# from #[-1,1]#?

1 Answer
Nov 9, 2016

#int_(-1)^1(2x^3-1)(x^4-2x)^6dx=(-1094)/7#

Explanation:

#int_(-1)^1(2x^3-1)(x^4-2x)^6dx#

We will apply the substitution #u=x^4-2x#. Differentiating this reveals that #du=(4x^3-2)dx#. Note that the #(2x^3-1)# term is exactly half this, so we can modify the integral as follows:

#=1/2int_(-1)^1(x^4-2x)^6(4x^3-2)dx#

Now we can substitute in our #u# and #du# values. However, we also should remember to change our bounds! Take #-1# and #1# and plug them into our #u=x^4-2x# term. That is, the bound of #-1# becomes #(-1)^4-2(-1)=3# and the bound of #1# becomes #1^4-2(1)=-1#. Thus:

#=1/2int_3^(-1)u^6du=1/2[u^7/7]_3^(-1)=1/2[(-1)^7/7-3^7/7]#

#=1/2[(-2188)/7]=(-1094)/7#