How do you find the antiderivative of #int (csc^3x) dx#?
1 Answer
Explanation:
#intcsc^3xdx=intcsc^2xcscxdx#
Split
#{(u=cscx" "=>" "du=-cscxcotxdx),(dv=csc^2x" "=>" "v=-cotx):}#
Thus:
#intcsc^3xdx=-cscxcotx-intcot^2xcscxdx#
Write
#intcsc^3xdx=-cscxcotx-int(csc^2x-1)cscxdx#
#intcsc^3xdx=-cscxcotx-intcsc^3x+intcscxdx#
Integrating
#intcsc^3xdx=-cscxcotx-intcsc^3xdx-lnabs(cotx+cscx)#
Solving for
#2intcsc^3xdx=-cscxcotx-lnabs(cotx+cscx)#
Dividing both sides by
#intcsc^3xdx=(-cscxcotx-lnabs(cotx+cscx))/2#
Short proof of the integral of cosecant:
#intcscxdx=intcscx*(cotx+cscx)/(cotx+cscx)dx=int(cscxcotx+csc^2x)/(cotx+cscx)dx#
Let
#intcscxdx=-int(dv)/v=-lnabsv+C=-lnabs(cotx+cscx)+C#