How do you find the antiderivative of #int (csc^3x) dx#?

1 Answer
Oct 22, 2016

#intcsc^3xdx=(-cscxcotx-lnabs(cotx+cscx))/2#

Explanation:

#intcsc^3xdx=intcsc^2xcscxdx#

Split #csc^3x# into a #cscx# and #csc^2x# term, then use integration by parts. Integration by parts takes the form #intudv=uv-intvdu#. Let:

#{(u=cscx" "=>" "du=-cscxcotxdx),(dv=csc^2x" "=>" "v=-cotx):}#

Thus:

#intcsc^3xdx=-cscxcotx-intcot^2xcscxdx#

Write #cot^2x# as #csc^2x-1#, which arises through the Pythagorean Identity:

#intcsc^3xdx=-cscxcotx-int(csc^2x-1)cscxdx#

#intcsc^3xdx=-cscxcotx-intcsc^3x+intcscxdx#

Integrating #cscx#, which is a common integral (if you don't already know it, a short proof for it is contained at the bottom of this answer):

#intcsc^3xdx=-cscxcotx-intcsc^3xdx-lnabs(cotx+cscx)#

Solving for #intcsc^3xdx# by adding it to both sides:

#2intcsc^3xdx=-cscxcotx-lnabs(cotx+cscx)#

Dividing both sides by #2#:

#intcsc^3xdx=(-cscxcotx-lnabs(cotx+cscx))/2#

#" "#

#" "#

Short proof of the integral of cosecant:

#intcscxdx=intcscx*(cotx+cscx)/(cotx+cscx)dx=int(cscxcotx+csc^2x)/(cotx+cscx)dx#

Let #v=cotx+cscx#, thus #dv=-csc^2x-cscxcotx#, which is the opposite of the numerator. Thus

#intcscxdx=-int(dv)/v=-lnabsv+C=-lnabs(cotx+cscx)+C#